Featured post

Making Effective Science Videos

Sunday, 5 December 2021

Automata - Mechanical Toys for Science Classroom

Automata for high school

A Mechanical toy also known as Automata, uses hand-powered mechanisms to create cyclical motions that animate a scene. Students design and create toy machines with moving characters that symbolize abstract concepts and represent dynamic situations.

Mechanical toy design integrates a range of skills from art and craftsmanship to mechanics and mathematics. Students work in a small group to create, co-create or read a story and then make the characters and scenes come to life through a moving automata. 

Building automata toy is a good example of integrating science and art with an activity. For learners, the narrative and decorative aspects are as important as the mechanical elements.

The students are guided to design and build their own automata using everyday material like corrugated sheet, sticks and straws.  A mechanical toy consists of two parts: its top features and an underlying mechanical assembly. In the mechanical part, simple machine elements like cams, levers and linkages are used in a playful way. Features are brought to life with the help of paper figures, colors and other craft ideas. 

This activity allows students to tinker with lots of things, guided by whim, imagination and curiosity. While tinkering, there are no instructions - but there are also no failures, no right or wrong ways of doing things. It's all about figuring out how things work and reworking them.

High school student workshop - Highlights (IISF - 2021, Panaji, Goa 10th - 13th December)


Reference Documents

a. Session Overview

b. Activity Worksheet

c. Reference Video Playlist




Saturday, 16 October 2021

Examples of mechanical linkages


 In an earlier video, we discussed key terms and some applications of linkage. 


Let us explore everyday examples based on linkage. 


Video here covers the following

.



Cloth Drying Rack


Wall Mounted Foldable Cloth Drying Rack is based on linkage. Mechanism can be better understood by simulating it. I used Linkage software for the same. Learnings from this activity can be used to build a small prototype as well. 


  1. Pantograph
  2. Folding chairs
  3. Elevator doors
  4. Bus doors
  5. Safety door
  6. Crane
  7. Pen Stands
  8. Stapler






Similar prototypes can be built for other applications as well using straws, needles, icecream sticks, paper strips and acrylic. 


Do give it a try.


Friday, 1 October 2021

Sand Automata

Recently I did work on Automata. Sharing the same here.






Performance of this acrobat is powered by Sand. 




Many such old toys, driven by sand, always fascinated me. This is how I built one.


Instead of building a mechanism inside a rectangular box, I built this funnel and wheel from a cardsheet. This allowed me to test each step independently and make changes accordingly. 

Once I was happy with the movement of the acrobat, I placed this funnel inside a rectangular box and sealed it.



With a nice background picture, watching the performance of an acrobat was the best thing to happen.  Acrobat can perform for 30 seconds. To repeat this, I have to rotate the box clockwise to collect all the sand back in the funnel.


Now details about the build.


Cardsheet Funnel


Instead of building compartments in a box, an independent funnel is built with a cardsheet. This helps a lot in initial testing and finer adjustment. Triangle like shape is cut with each side - 15 cm. Sand will enter from this slot. A 6 cm extension on one side of the triangle will house the wheel. Large opening near the extension is sealed with paper with a small hole. 


Wheel


The Cardsheet wheel is made with a radius of 4 cm. 1 cm wide strips are pasted to form 8 small compartments. Toothpick acting as an axle is placed slightly off-center. This is important for two -way movement of the wheel. Larger wheel means more sand and hence acrobat can move full 

circle. 


Acrobat


Initially I made acrobat with PVC sheet, pins and blank refill. But this was heavy for the wheel I built. Hence I had to build another one with a thinner plastic sheet. 


Water instead of Sand


I tried using water instead of sand to power the acrobat. Wheel I designed was small. It could not move the acrobat as planned. 



Just  a Box


Initially, I built a mechanism in a used cardboard box. But testing and alignment was an issue. I also found that the weight of the acrobat was more for the wheel employed.



Tinkering


Try with other materials as well like these millets used in bird feeder. 


Enjoyed building sand automata. Sharing some versions which of course did not work to my satisfaction.


Thank You.


Saturday, 17 July 2021

Tangram as teaching aid - Mathematics - Geometry

 Tangram, ( 七巧板 ) is a Chinese geometrical puzzle .

Seven pieces, cut from a square, can be used to form various other shapes. Tangrams are a great exercise in spatial awareness. Individual shapes must be slid, rotated and flipped to form a new shape.

Let us explore the use of Tangram as a teaching aid for some mathematical concepts.



Video Reference





In this video, We will cover Transformations, Congruence, Symmetry.



In the next video we will cover the perimeter area and fractions in the next one.


Let's get started.


Instead of buying Tangram from the market, we will create our own with a thick card sheet and print out with a tangram profile. We will also explore A4 paper so that all students can perform these activities.

Tangram puzzles are made up of seven polygons or “tans.”


Each piece is also called tan. There are five triangles, one square and one parallelogram . There are two large triangles, one medium triangle and two small triangles



Shapes


First graders are introduced to two dimensional shapes. 


Students get used to using the correct name for shapes as well as imagining how those shapes move and rotate through space. 


These puzzles are also an easy way to build vocabulary surrounding geometric shapes like Triangles, Square and Rectangle.



We can make all kinds of different shapes with 7 tans. Basic shapes can also be constructed with seven or fewer tans .Restrict the number of tans and ask how many shapes are possible with these tans.


Triangle



Make a triangle from two small and one medium triangles.


Make a square from two small and one medium triangles.


Make a parallelogram from two small and one medium triangles.


Make a rectangle and trapezium using two small triangles and parallelogram.


Make a square, rectangle and a triangle using all seven pieces.


Square


Constructing squares using 1, 2, 3, 4, and 7 pieces . Can we do it with 5 or 6 pieces only ?

Do analysis and find out why it is not possible. 


Make other shapes like rectangle, trapezoid, parallelogram and polygons with more than 4 sides.


Transformations: Flips, Turns and Slides


Transformations are changes that are made to a shape.  


Slide, Turn and Flip are position changes you can make to a shape.


These changes describe motions and the result of a motion.



Slide



I can slide this triangle to the top, bottom, diagonally,  to the left or to the right. 


Slides are the simplest transformation just moving something from one place to another. 


No rotation, resizing or anything else, just moving.  


In pre-primary grade,  children learn to describe relative position using words like: above, below and between.


In primary grades, we usually describe a slide using relative position words, such as "slide to the left" or "slide down and to the right". 


We will use these two triangles..



Slides are also known as translation.


 In higher grades, we often use grid coordinates, so a translation by (5, 0), means to slide right 5 units. translation by  (0,-5) means slide down 5 units and so on. (-5,4) means slide left 5 units and slide up 4 units.



Flip



Just like we flip the paper, shapes can also be flipped.Again let's start with two triangles. 


We will place one triangle on the top of the other.I can flip the triangle on the vertical side.


This is the original position and this is the position after flipping. Flipped triangle is the reflection of the original position. We can place a mirror on this vertical side and see the reflection as well. 


Same triangle can be flipped on the horizontal side like this.


Again, it's a reflection of the triangle. 



Try flipping on the longer side of the triangle.


Flipping is always performed with respect to a line. 


If we flip the triangle in this position with respect to the middle line, its orientation remains unchanged.


Try the same activity with square and parallogram.


You can also trace the shape on normal paper with a sketch pen.


Flip the paper and you see its image just like you flip the shape.




Turn


A turn or a rotation describes the motion of turning a shape as if it were drawn on a piece of paper, and you turned the whole piece of paper.  


The usual primary-grades vocabulary is a "turn" and the usual middle-grades vocabulary is "rotation". 


Rotate the triangle clockwise or anticlockwise


You can rotate it by full turn. One fourth of a turn or half turn.



Triangle in this square can be rotated counterclockwise to form another triangle. 


Same triangle can be rotated counterclockwise by 45 degrees, 90 degrees and 180 degrees.



With the help of grid lines, we can rotate the shape in steps of 90 degrees. 


and measure the angle as well. 


90 degrees


180 degrees


270 degrees


Right now we are rotating a  triangle around one corner. 


Use a pen to trace various angles of rotation and build a nice design.


Terms will change with grade. With primary grades, we will take in terms of center, angle of rotation.

Instead of one triangle, I can take two and repeat the same operation.

This time I get a square from a rectangle. 


After any of those transformations (turn, flip or slide), the shape still has the same size, area, angles

and line lengths. 


Try these operations on other shapes and with different points around which you rotate the shape.

Use Grid as well drawn on the corrugated sheet OR plain white paper for higher grades.

Use coordinates for higher grades …..




Congruence


In geometry, two figures or objects are congruent if they have the same shape and size.


These two triangles are congruent as all corresponding angles are of the same measure so are

the sides.


We can quickly check this by overlapping two triangles. 


Same is true with these large triangles as well. 


How about these two squares ? 


One is a regular square tan while the other is formed with the help of two small triangles. 


We can place this square on the top of the square on the right and check if they are congruent.

Yes, these two squares are congruent. 


In elementary geometry the word congruent is often used  for angles.

Two angles are congruent if they have the same measure.




We can keep a small triangle on the top of the large one and verify.


Same is true for the other two corresponding angles as well.


Similar shapes


The two triangles on the left are congruent, while the third is similar to them. The last triangle is neither congruent nor similar to any of the others. Congruence permits alteration of some properties, such as location and orientation, but leaves others unchanged, like distances and angles. The unchanged properties are called invariants.



Two triangles are congruent if their corresponding sides are equal in length, and their corresponding

angles are equal in measure.


How about a mirror image ?


This triangle on the right is a mirror image of the one on the left ? Are they congruent ? 


One way to think about triangle congruence is to imagine they are made of cardboard. They are congruent if you can slide them around, rotate them, and flip them over in various ways so they make a pile where they exactly fit over each other.

Yes. Their corresponding sides and angles are equal.

These two rectangles have matching angles equal but their matching sides are not equal and so they are not congruent. They are the same shape but not the same size.

If you have two sets of tangrams, squares and triangles and rectangles can be formed in different combinations and the concept of congruence can be tested .

But with the help of pushpin , you can rotate around any point on a triangle. 




Symmetry



Symmetry can be better explored with tans made from A4 paper. 


Fold this paper to make a square. Cut with scissors and discard the rectangle.


Unfold and cut square along the fold.  We get two triangles.


Take one triangle and fold it again in two equal parts.  The two triangles are part of the 7 tans we will build. 


Let us take this large triangle and fold it just to get the midpoint on this long line.


Turn around and fold it like this. 


Cut along this fold line so that we get a medium triangle. This is our third tan.


Use paper tangrams to explore more about symmetry and its notations.


When the folded part sits perfectly on top (all edges matching), then the fold line is a Line of Symmetry.


This square can be folded in different ways such that the folded part sits perfectly on top.


Square has three lines of symmetry.


This triangle has only one line of symmetry .


If I fold like this, two parts do not match. 


We can take help of the mirror as well to find a line of symmetry. 


When the mirror is placed on the line of symmetry, the shape looks the same. 


Mirror can also be placed on the square on different lines of symmetry as well. 


Lines of symmetry can be identified and different formations of tans can be tried out with students as well.



Links to the templates used in this video are available on this Google Drive link.







Friday, 9 July 2021

High School Optics - Activity Kit

 




Optics
                          

Activity Kit










Concept based activity kit encourages creativity and tinkering among students aged 10-18 years.

Activities are designed as per learning progression in the area of optics.


Kit provides only key inputs to the students. Other material required to understand the concepts should be sourced locally or built with things around. This is purposely done to promote resourcefulness and a do-it-yourself approach.


Activities are designed to visualize key laws from the textbook. These laws are otherwise explained as animation or lecture elsewhere.


Kit enables students to perform 10+ activities. Video is provided as a reference for each activity.


For an overview of the activities which can be experienced with the inputs provided click here 






Concepts


  • Reflection

  • Refraction

  • Dispersion 


Activities


  • Ray of light and Plain Mirror

  • Designing with Kaleidoscope

  • Spy with Periscope

  • Image formation in Plain Mirror

  • Multiple Images

  • Spherical Mirror Terminology

  • Ray Path for Convex and Concave Mirrors

  • Laws of refraction with water

  • Refractive Index of solids and liquids

  • Dispersion of light

  • Total Internal Reflection

  • Ray Path in lenses

  • Prism with plastic sheet



Inputs


  • Acrylic Mirrors

  • Acrylic Lense profiles

  • Laser 

  • Reference Videos

  • Worksheets

  • Challenges